
MS1-01B Data-based technologies for modelling, informing and augmenting learning about fluids and flow simulations
Contributions in this session:
-
(Keynote)
Temperature field inference using physics-informed neural networks in turbulent natural convection
K. Doria, A. Sergent*, D. Lucor -
Physics-constrained Deep Learning for the k-epsilon Turbulence Model Calibration
L. Cotteleer*, A. Parente -
Active flow control on 3D cylinders through deep reinforcement learning
P. Suárez*, F. Alcántara-Ávila, A. Miró, J. Rabault, B. Font, O. Lehmkhul, R. Vinuesa -
Dealing with faulty sensors: a physics-informed convolutional neural network approach for recovering solutions to governing equations
D. Kelshaw*, L. Magri