MS1-03B Data-Driven Modeling and Machine Learning for Multiphysics Simulations
Corresponding Organizer: Dr. Gianmarco Mengaldo (National University of Singapore)
Chaired by:
Dr. Gianmarco Mengaldo (National University of Singapore , Singapore)
Dr. Gianmarco Mengaldo (National University of Singapore , Singapore)
Scheduled presentations:
-
Keynote
Deep Learning-based Reduced Order Modeling for Unsteady Flow and Fluid-Structure Interaction
R. Jaiman*, R. Gao -
Assessment of Convolutional Recurrent Autoencoder Network for Learning Wave Propagation
W. Mallik*, R. Jaiman, J. Jelovica -
Multi-scale rotation-equivariant graph neural networks for unsteady Eulerian fluid dynamics
M. Lino, S. Fotiadis, A. Bharath, C. Cantwell* -
Graph Neural Networks to Learn Mesh-Based Fluid Simulations with Physical Symmetries
M. Horie*, N. Mitsume -
Student
Data-driven spectral modeling for the (thermal) quasi-geostrophic equations
S. Ephrati*, E. Luesink, P. Cifani, A. Franken, B. Geurts